Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Transl Oncol ; 26: 101541, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2031717

RESUMEN

Zhang et al. reported the impact of different risk factors and comorbidities in COVID-19 lethality. The authors observed that the odds of dying by COVID-19 in cancer patients decrease with age and cancer becomes a non-significant factor above 80 years. We speculate on the possible causes for the different COVID-19 severity between elderly and young patients. Several factors that can have a different impact on young and elderly have to be taken into account such as inflammation, microbiota and anti-cancer therapies. Inflammaging is a complex process that characterizes elderly people and it is believed to contribute to the severity of COVID-19 associated with old age. Cancer and related therapies may alter the process of inflammaging both quantitatively and qualitatively and could impact on COVID-19 severity. Moreover, therapies used in elderly cancer patients are usually different from that used for young people where the presence of comorbidities and the mechanisms of action of the different drugs both on the susceptibility genes and on other factors have to be considered. Sex hormones and anti-estrogen therapies affect significantly gene expression in target cells thereby modulating the susceptibility of the tissues to SARS-CoV-2 infection and as a consequence the extent of the symptoms. The concentration of sex hormones varies with aging and among sexes. Interestingly, recent evidences, further corroborate the hypothesis that also sex hormones or anti-estrogen therapies impact the susceptibility to COVID-19 and its severity.

2.
Molecules ; 27(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1917640

RESUMEN

Different pathological conditions, including viral infections and cancer, can have a massive impact on the endoplasmic reticulum (ER), causing severe damage to the cell and exacerbating the disease. In particular, coronavirus infections, including SARS coronavirus-2 (SARS-CoV-2), responsible for COVID-19, cause ER stress as a consequence of the enormous amounts of viral glycoproteins synthesized, the perturbation of ER homeostasis and the modification of ER membranes. Therefore, ER has a central role in the viral life cycle, thus representing one of the Achilles' heels on which to focus therapeutic intervention. On the other hand, prolonged ER stress has been demonstrated to promote many pro-tumoral attributes in cancer cells, having a key role in tumor growth, metastasis and response to therapies. In this report, adopting a repurposing approach of approved drugs, we identified the antiplatelet agent ticlopidine as an interferent of the unfolded protein response (UPR) via sigma receptors (SRs) modulation. The promising results obtained suggest the potential use of ticlopidine to counteract ER stress induced by viral infections, such as COVID-19, and cancer.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Neoplasias , Reposicionamiento de Medicamentos , Estrés del Retículo Endoplásmico , Humanos , Neoplasias/patología , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , SARS-CoV-2 , Ticlopidina/farmacología , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA